交通运输工程系
电子邮件:hongdihe[at]sjtu.edu.cn
通讯地址:上海市闵行区东川路800号木兰船建大楼A311室
个人主页:https://uav.sjtu.edu.cn/
【教育背景】
2006.9-2010.7 香港城市大学建筑学与土木工程系, 博士
2003.9-2006.7 上海大学上海市应用数学和力学研究所,流体力学,硕士
1999.9-2003.7 西北工业大学应用数学系,信息与计算科学,学士
【工作经历】
2019.02-至今 上海交通大学船建学院 交通运输工程系 长聘教规副教授(博导)
2010.10-2019.01 上海海事大学物流研究中心 讲师 副教授
2017.09-2018.11 美国康乃尔大学 访问学者
2016.07-2016.09 香港城市大学 Research Fellow
1 人工智能与智能交通 (Application of AI in Intelligent Transport System)
2 新能源车及其能耗分析(New energy vehicles and energy consumption)
3 交通、环境与健康研究 (Transportation, Environment and Community Healthy)
4 无人机在交通及其环境中的应用研究(Application of Unmanned Aerial Vehicle (UAV) in Transportation and Environment)
(Students who are interested in joining our group for Master or Ph.D program are all welcome to contact me viahongdihe@sjtu.edu.cn. Preferred background: Transportation, Environment, Civil Engineering, Mathematics, Computer Science and other related major)
2021.05-至今 《上海大学学报(自然科学版)》青年编委
2017.08-至今 世界交通运输大会 交叉学部 交通污染技术委员会主席
2016.09-至今 上海市力学学会 交通流动力学与数据科学专业委员会委员
2014.06-至今 交通科学与计算专题研讨会 组委会成员
国家自然科学基金面上项目, 智能网联环境下混动车油耗与电池能耗的协同优化研究, 2025-2028, 项目负责人
上海市新能源汽车公共数据采集与监测研究中心2024揭榜挂帅项目,基于通用预训练算法的电动车电池状态评估与预警, 2024-2025, 项目负责人
国家自然科学基金面上项目,基于垂直监测的城市高架交通排放物的三维扩散机理研究,2021-2024,项目负责人
2023年上海市人民政府决策咨询研究项目,中国邮轮全产业链生态体系建设研究,2023-2024,项目负责人
上海市2023年度“科技创新行动计划”软科学研究项目,上海新能源车服务产业的数据基础制度建设路径研究, 2023-2024, 项目负责人
2021年度上海市人民政府决策咨询研究重点课题,科技创新赋能上海碳达峰碳中和目标的路径与对策研究,2021-2022,项目负责人
上海交通大学-康奈尔大学合作项目:Spatiotemporal Distributions of Traffic-related Carbon Emission in Near-road Neighbourhoods,2022-2023,项目负责人
上海交通大学-大阪大学合作项目:Assessment of mobility as a service (MaaS) in sustainable development,2019-2020,项目负责人
国家自然科学基金面上项目,交通拥堵产生的超细颗粒物的动态分布及控制策略研究,2017-2020,项目负责人
国家自然科学基金青年项目,基于颗粒物减排的城市道路交叉口交通流的动力学建模与优化,2014-2016,项目负责人
上海市浦江人才计划项目,上海城市车辆流的动态优化与可吸入细颗粒物的污染控制,2012-2014,项目负责人
上海市科委项目,港口细颗粒物排放特征及对区域空气质量的影响,2014-2016,项目负责人
中国科技部国家重点研发计划子课题,基于无人机和大载荷气艇的大气垂直结构探测技术,2016-2020,项目参与人
国家社会科学基金重大项目,城市交通政策和设施建设对大气环境影响的评价研究,2016-2020,项目参与人
上海市环境保护局,上海市智能环保综合决策与大数据应用研究,2018-2019,项目参与人
中国交通运输部,基于船舶运动轨迹的船舶能耗和碳排放统计算法研究,2014-2016,项目参与人
上海市交通运输与港口管理局,港口综合发展指数,2012,项目参与人
2024
[1]He, HD*, LU, DN., Zhao, HM, Peng, ZR. Characterizing CO2 and NOx emission of vehicles crossing toll stations in highway. Trans. Res. Part D, 2024, 126: 104024.
[2]Huang, H.C., Li, BW., Wang, YZ., Zhang, Z.He, H.D*. Analysis of factors influencing energy consumption of electric vehicles: Statistical, predictive, and causal perspectives. Applied Energy, 2024, 375: 124110.
[3] Huang, HC,He, HD*, Peng, ZR. Urban-scale estimation model of carbon emissions for ride-hailing electric vehicles during operational phase. Energy, 2024, 293: 130665.
[4] Zhao, HM,He, HD*, Lu, DN, Zhou, D, Lu, CX, Fang, XR, Peng, ZR. Evaluation of CO2 and NOx emissions from container diesel trucks using a portable emissions measurement system, Build. Environ. 2024, 252: 111266.
[5] Zhang, Z., Gao, K.,He, HD*., Cui, SH., Hu, LY., Yu, Q., Peng, ZR. Environmental impacts of ridesplitting considering modal substitution and associations with built environment. Trans. Res. Part D, 2024, 130: 104160.
2023
[6]He, H.D*., Wang, Z.Y., Zhao, H.M., Pan, W., Lu, W.Z. Spatial-temporal distribution and pedestrian exposure assessment of size-fractionated particles on crosswalk of urban intersection. Environmental Science and Pollution Research, 2023, 30: 83917-83928.
[7]Zhang, Z., Gao, K.,He, HD*., Yang, JM., Jia R., Peng, ZR. How do travel characteristics of ridesplitting affect its benefits in emission reduction? evidence from Chengdu. Trans. Res. Part D, 2023, 123: 103912.
[8]Liu, R.,He, H.D*., Zhang, Z., Wu, C.L., Yang, J.M., Zhu, X.H., Peng, Z.R. Integrated MOVES model and machine learning method for prediction of CO2 and NO from light-duty gasoline vehicle. Journal of Cleaner Production, 2023, 422, 138612.
[9]Wu, C.L.,He, H.D*., Song, R.F., Zhu, X.H., Peng, Z.R., Fu, Q.Y., Pan, J. A hybrid deep learning model for regional O3 and NO2 concentrations prediction based on spatiotemporal dependencies in air quality monitoring network. Environmental Pollution, 2023, 320, 121075.
[10]Liu, X., Shi, X.Q., Peng, Z.R*.,He, H.D*. Quantifying the effects of urban fabric and vegetation combination pattern to mitigate particle pollution in near-road areas using machine learning. Sustainable Cities and Society, 2023, 93: 104524.
[11]Lu, D.N.,He, H.D*., Zhao, H.M., Lu, K.F., Peng, Z.R., Li, J*. Quantification of traffic-related carbon emission on elevated roads through on-road measurement. Environmental Research, 2023, 116200.
[12]Lu, D.N.,He, H.D*., Wang, Z., Zhao, H.M., Peng, Z.R. Impact of urban viaducts on the vertical distribution of fine particles in street canyons. Atmospheric Pollution Research, 2023, 14, 101726.
[13]Huang, H.C., Cheng, J., Shi, B.C.,He, H.D*. Multi-step forecasting of short-term traffic flow based on Intrinsic Pattern Transform. Physica A. 2023,621, 128798.
2022
[14] Zhu, X.H.,He, H.D*., Lu, K.F., Peng, Z.R*., Gao, H.O. Characterizing carbon emissions from China V and China VI gasoline vehicles based on portable emission measurement systems,Journal of Cleaner Production, 2022, 378, 134458.
[15]Li, C.,He, H.D*, Peng, Z.R. Spatial distributions of particulate matter in neighborhoods along the highway using unmanned aerial vehicle in Shanghai. Building and Environment, 2022. 211: 108754.
[16]Wu, C.L.,He, H.D*., Song, R.F., Peng, Z.R. Prediction of air pollutants on roadside of the elevated roads with combination of pollutants periodicity and deep learning method. Building Environment 2022, 207: 108436.
[17]Zhang, Z.,He, H.D*., Yang, J.M., Wang, H.W., Peng, Z.R. Spatiotemporal evolution of NO2 diffusion in Beijing in response to COVID-19 lockdown using complex network. Chemosphere, 2022. 293: 133631.
[18]Zhao, H.M.,He, H.D*., Lu, K.F., Hang, X.L., Ding, Y*., Peng, Z.R. Measuring the impact of an exogenous factor: An exponential smoothing model of the response of shipping to COVID-19. Transport Policy, 2022, 118: 91-100.
[19]Jiang, Y. H., Li, B.,He, H.D*., Li, X. B., Wang, D. S., & Peng, Z. R. Identification of the atmospheric boundary layer structure through vertical distribution of PM2. 5 obtained by unmanned aerial vehicle measurements. Atmospheric Environment, 2022, 119084.
[20]Zhu, X. H., Lu, K. F., Peng, Z. R*.,He, H. D*., & Xu, S. Q. Spatiotemporal variations of carbon dioxide (CO2) at Urban neighborhood scale: Characterization of distribution patterns and contributions of emission sources. Sustainable Cities and Society, 2022, 78, 103646.
[21]Liu, X., Shi, X. Q.,He, H. D*., & Peng, Z. R*. Distribution characteristics of submicron particle influenced by vegetation in residential areas using instrumented unmanned aerial vehicle measurements. Sustainable Cities and Society, 2022, 78, 103616.
[22]Liu, R., Wang, F.T., Wang, Z.P., Wu, C.L.,He, H.D*. Identification of Subway Track Irregularities Based on Detection Data of Portable Detector. Transportation Research Record, 2022. 03611981221097088.
2021
[23]He, H.D*., Gao, H. Oliver. Particulate Matter Exposure at a Densely Populated Urban Traffic Intersection and Crosswalk. Environmental Pollution. 2021, 268:115931 (ESI).
[24]Wu, C.L., Wang, H.W., Cai, W.J.,He, H.D*., Ni, A.N., Peng, Z.R. Impact of the COVID-19 lockdown on roadside traffic-related air pollution in Shanghai, China. Building Environment 2021, 194: 107718.
[25]Zhao, H.M.,He, H.D*., Zhao, J.Q., Ding, Y., Peng, Z.R., Wang, H.W. Characterizing the Particle Variations and Human Exposure in Port and Urban Areas. Transportation Research Record 2021, 2675: 669-684.
[26]Song, R.F., Wang, D.S., Li, X.B., Li, B., Peng, Z.R.,He, H.D*. Characterizing vertical distribution patterns of PM2.5 in low troposphere of Shanghai city, China: Implications from the perspective of unmanned aerial vehicle observations. Atmosphere Environment 2021, 265: 118724.
[27]Wang, Z.Y.,He, H.D*., Zhao, H.M., Peng, Z.R. Spatiotemporal analysis of pedestrian exposure to submicron and coarse particulate matter on crosswalk at urban intersection. Building Environment 2021, 204:108149.
[28]Tanvir, M.R.A.,He, H.D*., Peng, Z.R. Spatio-temporal variability in black carbon concentrations at highway toll plaza: Comparison between manual and electronic toll lanes. Atmospheric Pollution Research. 2021, 12: 286-294.
[29]Jia, Y.P., Lu, K.F., Zheng, T., Li, X.B., Liu, X., Peng, Z.R.,He, H.D*. Effects of roadside green infrastructure on particle exposure: A focus on cyclists and pedestrians on pathways between urban roads and vegetative barriers. Atmospheric Pollution Research. 2021, 12: 1-12.
[30]Luo, Z.G., Wang, Z.Y., Wang, H.W.,He, H.D*., Peng, Z.R. Characterizing spatiotemporal distributions of black carbon and PM2.5 at a toll station: Observations on manual and electronic toll collection lanes. Building Environment 2021, 199: 107933.
[31]Zheng, T., Wang, H.W., Li, X.B., Peng, Z.R.,He, H.D*. Impacts of traffic on roadside particle variations in varied temporal scales. Atmospheric Environment 2021, 253: 118354.
2020
[32]He, H.D*., Lu, W.Z. Comparison of three prediction strategies within PM2.5 and PM10 monitoring networks. Atmospheric Pollution Research. 2020, 11: 590-597.
[33]Chen, Q., Li, X.B., Song, R.F., Wang, H.W., Li, B.,He, H.D*., Peng, Z.R. Development and utilization of hexacopter unmanned aerial vehicle platform to characterize vertical distribution of boundary layer ozone in wintertime. Atmospheric Pollution Research. 2020, 11: 1073-1083.
[34]Lu, K.F.,He, H.D., Wang, H.W., Li, X.B., Peng, Z.R. Characterizing temporal and vertical distribution patterns of traffic-emitted pollutants near an elevated expressway in urban residential areas. Building Environment 2020, 106678.
[35]Wang, H.W., Li, X.B., Wang, D.S., Zhao, J.,He, H.D*., Peng, Z.R. Regional prediction of ground-level ozone using a hybrid sequence-to-sequence deep learning approach. Journal of Cleaner Production, 2020, 253:19841.1
[36]Li, X.B., Peng, Z.R., Lu, Q.C., Wang, D.F., Hu, X.M., Wang, D.S., Li, B., Fu, Q.Y., Xiu, G.L.He, H.D*. Evaluation of unmanned aerial system in measuring lower tropospheric ozone and fine aerosol particles using portable monitors. Atmospheric Environment 2020, 117134.
2019及以前
[37] He, H.D*., Li, M., Wang, W.L., Wang, Z.Y., Xue, Y. Prediction of PM2.5 Concentration based on the Similarity in Air Quality Monitoring Network. Building Environment 2018, 137:11-17.
[38]He, H.D*., Zhang, C.Y., Wang, W.L., Hao, Y.Y., Ding, Y. Feedback control scheme for traffic jam and energy consumption based on two-lane traffic flow model. Transportation Research Part D 2018, 60:76-84.
[39]He, H.D., Shi, W., Lu,W.Z. Investigation of exhaust gas dispersion in the near-wake region of a light-duty vehicle. Stochastic Environmental Research and Risk Assessment 2017, 31:775-783.
[40]He, H.D*., Qiao, Z.X., Pan, W., Lu,W.Z. Multiscale multifractal properties between ground-level ozone and its precursors in rural area in Hong Kong. Journal of environmental management 2017, 196: 270-277.
[41]He, H.D*. Multifractal analysis of interactive patterns between meteorological factors and pollutants in urban and rural areas. Atmospheric Environment, 2017, 149:47-54.
[42]He, H.D., Pan, W., Lu, W. Z., Xue, Y. Multifractal property and long-range cross-correlation behavior of particulate matters at urban traffic intersection in Shanghai. Stochastic Environmental Research and Risk Assessment 2016, 30:1515-1525.
[43]He, H.D*., Wang, J.L., Wei, H.R., Ye, C., Ding, Y. Fractal behavior of traffic volume on urban expressway through adaptive fractal analysis. Physica A 2016, 443:518–525.
[44]He, H.D., Lu, W. Z., Xue, Y. Prediction of Particulate Matter at Urban Intersection by using Multilayer Perceptron Model based on Principal Components. Stochastic Environmental Research and Risk Assessment 2015, 29: 2107-2114.
[45]He, H.D., Lu, W. Z., Xue, Y. Prediction of Particulate Matter at Urban Intersection by using Artificial Neural Networks combined with Chaotic Particle Swarm Optimization Algorithm. Building Environment 2014, 78:111-117.
[46]He, H.D., Lu, W.Z. Spectral analysis of vehicle pollutants at traffic intersection in Hong Kong. Stochastic Environmental Research and Risk Assessment 2012, 26:1053–1061.
[47]He, H.D., Lu, W.Z. Decomposition of Pollution Contributors to Urban Ozone Levels Concerning Regional and Local Scales. Building Environment 2012, 49:97-103.
[48]He, H.D., Lu, W.Z. Urban Aerosol Particulates on Hong Kong roadsides: Size Distribution and Concentration Levels with Time. Stochastic Environmental Research and Risk Assessment 2012, 26:177-187.
[49]He, H.D., Lu, W.Z., Dong, L.Y. An Improved Cellular Automaton Model Considering Effect of Traffic Lights and Driving Behavior. Chinese Physics B 2011, 20:040514.
[50]He, H.D., Lu, W.Z., Dong, L.Y. Jam formation of traffic flow in harbor tunnel. Communications in Theoretical Physics 2011, 56:1140.
[51]Lu, W.Z.,He, H.D. Andrew Y T Leung, Assessing air quality in Hong Kong: A proposed, revised air pollution index (API). Building Environment 2011, 46:2562-2569.
[52]Lu, W.Z.,He, H.D., Dong, L.Y. Performance assessment of air quality monitoring networks using principal component analysis and cluster analysis. Building Environment 2011, 46:577-583.
[53]He, H.D., Lu, W.Z., Xue, Y. Prediction of PM10 concentrations at urban traffic intersections using semi-empirical box modelling with instantaneous velocity and acceleration. Atmospheric Environment 2009, 43:6336-6342.
[54]He, H.D., Lu, W.Z., Xue, Y., Dong, L.Y. Dynamic characteristics and simulation of traffic flow with slope. Chinese Physics B 2009, 18:2703-2708.
【承担课程】
本科生课程 《运筹学》(校级课程思政示范课程)
研究生课程 《交通环境工程》
研究生课程《交通统计分析与建模》
研究生课程《定量分析:模型与方法》
【教学改革项目】
上海交通大学研究生课程思政示范课程培育项目,《交通统计分析与建模》,2023-2024,项目负责人
上海交通大学本科课程思政示范课程培育项目,《运筹学》,2022-2023,项目负责人(结题优秀)
上海交通大学教学发展基金:交通强国战略下面向交通运输专业《运筹学》课程的实践教学研究,2021-2022,项目负责人 (结题优秀)
上海交通大学教学发展专项基金:互动媒体教学环境中学习主动性的提升策略探究-以《运筹学》为例,2020,项目负责人
【教学论文】
何红弟,王梓烨,吴翠林。 线上与线下学习效果的评价对比及对策研究-以《运筹学》为例。中国教育信息化,2022,28(04):87-92.
何红弟,卢丹妮,徐思晴. 校园防疫案例融入运筹学思政教学中的设计与探索. 大学数学,2024,40(02): 120-125.
【教学奖励】
《AI引领-学科交叉-产教融合:面向智慧交通的研究生创新人才培养模式探究》,上海交通大学2024年度研究生教学成果奖一等奖
《校园防疫案例融入《运筹学》思政教学中的设计与探索》,第二届交通运输类专业课程思政教学二等奖,2023
《面向交通强国战略构建纵向贯通横向联动的实践育人体系-培养创新型交通人才》,上海交通大学2021年度教学成果奖一等奖
《师德融通-专业贯通-评价联通:交通运输专业课程思政育人模式探索与实践》,上海交通大学2023年度教学成果奖二等奖
【教学创新】
2022年3月,何红弟老师归纳校园防疫中的典型案例,设计出校园防疫背景下运筹学的运输问题、背包问题、组合优化问题等教学内容,并将志愿者的奉献精神、科学家的探究精神、全体师生的人类命运共同体精神等思政元素融入其中,实现了《运筹学》专业知识教学与思政教育的深层次融合。
该创新的教学方式获得学生普遍认可,学生普遍反馈他们不仅学到运筹学的理论知识和方法,也学到了如何利用运筹学知识解决实际问题。同时,也获得了学校教学发展中心的认可,受邀在学校教与学论坛上进行汇报,也被中国运筹学学会进行报道,先后被澎湃新闻网、上海教育电视台等进行视频采访,被人民日报、新华网、解放日报、新民晚报、上海科技网、上海教育新闻网等数十家媒体进行报道。
【人民日报】科研抗疫,科研育人,交大人在行动
https://wap.peopleapp.com/article/rmh27888580/rmh27888580
【新华网客户端】用抗疫中的鲜活案例,引导师生投身科研
【解放日报】核酸检测棉签为啥都要抹两三下?大学老师在线授课用数值模拟实验分析流体力学
https://static.zhoudaosh.com/77B550557C7184112BCBBA933B47FFABA00383C10945DEC530F84060E738C81D
【劳动报】核酸检测、送盒饭都能成为科研主题,上海交大老师用身边案例引导学生投身研究
https://www.51ldb.com/shsldb/sz/content/018017a647aac0010000df844d7e124a.htm
【新民晚报】核酸检测与流体力学 校园送餐与运筹学和控制论 来看上海交大课堂里这些案例研究
https://mp.weixin.qq.com/s/2H9Ahd_XZMUPqOnFPm5YAg
【新闻晨报】核酸检测中的“流体力学”、“运筹学”中的配餐问题,这些都被交大老师搬到课堂上
https://static.zhoudaosh.com/77B550557C7184112BCBBA933B47FFABA00383C10945DEC530F84060E738C81D
【上海教育新闻网】上海教育的战“疫”时刻 | 科研抗疫,科研育人,交大人在行动!
https://mp.weixin.qq.com/s/2H9Ahd_XZMUPqOnFPm5YAg
【上海人民广播电台】核酸检测中的“流体力学”、3万师生配餐中的运筹学 “抗疫”细节融入上海交大课堂教学
https://m.ajmide.com/m/branddetail?id=36267897
【澎湃新闻】上海交大船院教授将送餐优化问题用作运筹学课堂案例
https://m.thepaper.cn/newsDetail_forward_17147548
【交大要闻】[战疫大视野]科研抗疫,科研育人,交大人在行动
https://news.sjtu.edu.cn/jdyw/20220411/170096.html
何红弟,宋瑞峰,金梦怡,陈骞、高雅. 便携式大气污染物监测智能背包,实用新型专利,2021.
何红弟,李白,曹蓉,鲁开发、罗祯广. 一种用于大气环境三维监测的智能吊舱系统,实用新型专利,2022.
上海交通大学2024年教书育人三等奖
2023年 第六届上海新能源汽车大数据竞赛二等奖(3/543),指导老师
2022年 第五届上海新能源汽车大数据竞赛一等奖(1/492),指导老师
2021年 第三届“交通·未来”大学生科创作品大赛一等奖,指导老师
2021年 上海交通大学2021年度教学成果奖一等奖
2013年 上海市教学成果二等奖
2012年 上海市浦江人才计划